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Executive Summary 
E-commerce vendors face two important challenges: driving up purchases and maintaining 
customer loyalty. Only 2.7%* of browsers buy from a site and only 15%* of those buyers 
return to buy again (Forrester Research, Inc.  1999). To succeed, e-marketers must find ways 
to keep visitors on the site.  They must make the visitors’ experience convenient, satisfying 
and personally relevant.  Above all, they must entice Web visitors to come back for more. 

Personalization dramatically improves web site revenue and customer loyalty. In particular, 
personalization has been shown to increase page views per visit, repeat visit rate, and 
revenue per visit for e-commerce sites.   

Adaptive personalization is a popular way to increase revenue and customer loyalty. 
However, many adaptive personalization systems slow down when faced with high traffic. 
This paper shows that LikeMinds Personalization Server scales to meet the needs of the 
most demanding sites, on relatively inexpensive hardware. LikeMinds distributed processing 
architecture scales nearly linearly with additional machines, making it the most efficient and 
flexible choice for e-marketers. 

Personalization Defined 

Personalization comes in many forms. Customization allows visitors to change pages on a web 
site to fit their needs, such as specifying what stocks are interesting and what sports scores to 
report. This works as long as visitors know what they want. 

Rules-based personalization allows a marketer to specify fixed rules to change a site based on 
visitor behavior. For instance, a marketer might implement a rule that if a visitor buys a 
digital camera, the site should up-sell additional memory for the camera. BroadVision, a 
popular e-commerce application server, supports rules-based personalization.   

Rules are effective when the marketer understands customers and products well enough to 
predict each visitor’s response. However, rules-based personalization falters when a marketer 
can’t easily predict the response to an offer. Rules-based systems don’t learn or adapt to user 
behavior in realtime. If no rule anticipates an important observed behavior, then a rules-
based system provides the default. Because products, customers and business models 
change, rules-based systems require constant maintenance. 

When a site has many content items or products to offer, adaptive personalization is more 
effective than rules-based personalization. This is because adaptive systems—such as the 
collaborative filtering system used by Andromedia’s LikeMinds Personalization Server—can 
learn from observed behavior and, based on that behavior, select the right content to present 
or the appropriate product to recommend.  



Revisiting the previous example, a marketer may not know ahead of time that buyers of 
digital cameras are also likely purchasers of high-quality color printers, better video cards, or 
more disk storage.  The site would not recommend these items because no rule told the 
system to do so.  

On the other hand, a site with an adaptive personalization system such as LikeMinds could 
observe that buyers of digital cameras also purchase these additional items. It would then 
automatically start recommending these items to digital camera buyers when appropriate—
without requiring any marketer intervention. Sites with adaptive personalization capture 
additional wallet share from online customers.  Satisfied by the shopping experience, 
customers come back for more.  For these reasons, adaptive personalization systems have 
become popular features of e-commerce Web sites. 

The Need for Speed 

As a Web site becomes more popular, the performance of the personalization system 
becomes increasingly critical to the site’s ability to satisfy visitors.  Online shopping succeeds 
when it makes shopping easier and more satisfying than driving to a brick-and-mortar store. 
Online visitors put a premium on finding and getting what they want as conveniently and 
rapidly as possible. If personalized recommendations are slow or inaccurate then the 
convenience is lost and visitors are very likely to take their business elsewhere—the 
competition is only one click away. 

For these reasons, Andromedia made performance and accuracy paramount in designing 
LikeMinds Personalization Server. These design imperatives have won many customers for 
Andromedia.  Companies that anticipate high demand and perform competitive tests 
consistently choose Andromedia’s LikeMinds personalization system for its ability to deliver 
accurate recommendations rapidly on high-traffic sites.  

How Much Speed Does a Site Need? 

Performance tests show LikeMinds meets the requirements of the highest traffic e-
commerce sites. 

To help customers choose the right hardware configurations, Andromedia created a 
performance laboratory to “torture test” LikeMinds on four different configurations: 
LikeMinds hosted on one dual-processor NT machine, on two dual-processor NT machines, 
on one dual-processor UltraSparc II machine, and on two dual-processor UltraSparc II 
machines. All four configurations interacted with an external database machine. 

On the most expensive test configuration Andromedia tried—LikeMinds Personalization 
Server running on a distributed-processing environment composed of two dual-processor 
UltraSparc IIs with a separate database machine—LikeMinds delivered up to 26,894,400 
personalized page views daily, while remaining within an acceptable latency range. This is 
comparable to traffic seen on large non-personalized portals, such as www.weather.com, 
impressive performance on hardware costing less than $84,000. 

In the least expensive test configuration—LikeMinds running on one dual-processor NT 
machine—the system delivered up to 8,609,143 personalized pages per day. This 
performance easily meets the requirements of most e-commerce sites.  The test shows online 



businesses can rapidly deliver highly accurate personalized recommendation with hardware 
that costs less than $15,800. 

The testing scenarios detailed in this report are very conservative. For example, the 
measured latency includes network delays between LikeMinds and the web server. Each 
simulated page generated four recorded events, and requested 100 recommended items. 
Typical sites experience lower network delays and interact with fewer parameters, obtaining 
better throughput and latency than reported here. 

The test results also demonstrate that LikeMinds multi-threaded, distributed-processing 
architecture scales nearly linearly with increases in computing power, meaning that the 
system has extremely high capacity and scalability.  

Introduction 

Personalization Improves Retention, Drives Loyalty, and Increases Revenue 

A salesperson that presents each and every customer with personally relevant products is 
likely to sell more products, and gain more repeat business.  That’s why many successful 
Web sites and call centers now incorporate adaptive personalization technology. Adaptive 
personalization builds a behavior or interest profile for each Web visitor, and then 
dynamically changes the online experience for each visitor based on that profile. 
Personalization increases important e-marketing metrics, such as time on the site, number of 
pages viewed, rate of return visits, and average spend rate per visit. 

Online merchants frequently use personalization systems based on collaborative filtering, 
such as Andromedia’s LikeMinds Personalization Server. LikeMinds records a person’s 
behavior, identifies other people that have similar behaviors (called “mentors”), and uses 
these mentors to predict content or product suggestions that are of interest to that individual 
Web visitor.  For e-commerce sites, this personally relevant cross-selling increases the 
revenue gained from Web visitors.  

LikeMinds has been proven to have a high ROI in the field. Levi-Strauss & Co. ran a 
comparison trial that showed that LikeMinds personalization increased the average online 
customer spend rate by 33%, the average time on the site by 75%, and repeat visitation by 
225% over a control group.  

Popular Sites Need High Throughput and Scalability 

There is an obvious correlation between the accuracy of personalized recommendations and 
the revenue that an e-commerce site will derive from them.  Accuracy counts—the better the 
recommendations, the higher the revenue and better the repeat visit rate. However, there is 
usually a tradeoff between performance and accuracy. Few realtime adaptive personalization 
systems can deliver both high performance and high accuracy, while accommodating the 
traffic seen on premier e-commerce sites. This should be a major concern, as slow 
personalization can try a visitor’s patience, result in lost revenue, and—worst of all—drive 
visitors to competitors’ sites.  

In initial deployments, low traffic may hide throughput limitations in personalization 
systems. Problems may not occur until a site gains more traffic. In some cases, extremely 
popular e-commerce sites have dropped their initial personalization system choice because 



the software was unable to support high demand. The wrong system can be fast in low 
traffic and a dog in high traffic. 

Every e-commerce site, even those with low traffic today, should plan for future success by 
estimating traffic levels one, two and three years down the road. Since effective 
personalization is often pervasive, it can be difficult to switch to another vendor. A slow site 
could damage an online merchant’s brand before they have time to replace or remove the 
system. 

Personalization Metrics 

Interaction with a personalization server can be broken into two parts: recording events, and 
getting predictions. In LikeMinds, application programming interfaces (APIs) provide 
addTransaction function calls to notify the system of events (ratings, purchases, product views, 
shopping cart inserts/deletes, etc.). These events tell the personalization system that a visitor 
has done something of interest.  The APIs also provide queryPrediction function calls to 
predict what a visitor will do, or recommend personally relevant products or content. A 
typical personalized page requires one addTransaction function call that passes multiple 
events, and one queryPrediction function call that returns multiple predictions.  

The important performance metrics in personalization are throughput and latency. 
Throughput is how many function calls can be performed in a second under sustained load. 
Latency is the average time required by a function call.  

To compute the performance a site requires, it is necessary to first determine the acceptable 
latency and peak personalized traffic.  Acceptable latency is the amount of time one can allocate per 
page to provide personalization. 300mS or less is generally regarded as imperceptible to 
visitors. In recommended configurations, LikeMinds performs one addTransaction call plus 
one queryPrediction call in less than 150mS total at peak loads. 

Peak personalized traffic is the number of pages per second during peak times. To calculate this, 
divide total pages per day by 86,400 (the number of seconds per day), then multiply by the 
peak traffic per hour and divide by the average traffic per hour.  

For example, suppose a site gets 1,000,000 page views daily, with the ratio of peak-to-
average hourly traffic at five-to-one. Then peak personalized traffic is about 58 pages per 
second. If every page is personalized with two function calls per page, the site requires 116 
calls per second—a demand easily satisfied by a modest Windows/NT implementation of 
LikeMinds. 

Scalability is the ability of a system to gracefully accommodate more traffic with additional 
computers. To achieve high scalability, the system must be designed from the ground-up to 
work in parallel. Many personalization systems in use today aren’t designed for scalability. 

The rest of this paper discusses LikeMinds’ highly scalable architecture, and describes the 
performance testing results for single and distributed configurations of LikeMinds on both 
Windows/NT and Solaris. The tests use conservative assumptions, so e-marketers can 
confidently use these results to determine the hardware and software configuration needed 
to personalize their Web sites.  



LikeMinds Architecture 

Andromedia’s LikeMinds Personalization Server was designed from the ground-up for low 
latency, high throughput, high scalability and high accuracy. These performance goals are 
essential for popular sites. Online businesses that directly compared LikeMinds performance 
and accuracy with that of competitive products have selected LikeMinds. 

This paper also discusses how LikeMinds Personalization Server achieves its high 
performance. The server was tested on different hardware and software configurations in the 
Andromedia Performance Lab. Results are shown for Windows/NT and Solaris, on single- 
and distributed processing configurations, running Oracle and Microsoft SQL Server 
database back-end software.  

LikeMinds predictive modeling is based on an innovative and patented form of collaborative 
filtering. LikeMinds first tracks user behavior, finds mentors with similar behaviors, and then 
uses the behaviors and preferences of those mentors to recommend new items. 
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Figure 1. Distributed Processing Architecture 

Figure 1, above, shows the architecture of the LikeMinds system. Behaviors—such as 
clicking on a link, purchasing a product, or specifying a preference for something—are 
interactions between the visitor and the content server (which can be a Web server, a call 
center application, etc.).  

The API library is a software interface installed on the same machine as the content server. 
It simply translates method calls to a network protocol. The API has several language 
realizations: Java, JavaScript, Visual Basic, C++, C. Multiple API libraries, installed on 
different machines, can communicate with a single front-end. 

The front-end has two functions: record behaviors and predict behaviors (or recommend 
things). It can be hosted on a different machine than the content server.  

When a visitor does something relevant, which is reported through the API, the front-end 
records that behavior in a lazy write-through cache. This type of cache makes writing into 
databases extremely fast. Several behaviors can be recorded in a single call. 

A relational database stores data about visitors, items to be recommended, mentors and 
relationships. An ODBC interface accommodates any relational database server. LikeMinds 
also has an Oracle native interface for higher performance needs. 

The sifter process constantly runs in the background to determine who’s like whom.  It 
matches visitors to other visitors or archetypes in the database using up-to-the minute 
behavioral data provided by the front-end process. Each visitor gets a set of mentors. Each 
mentor’s contribution to the recommendation is weighted according to the mentor’s 
similarity to the target. 



When a Web application requests a recommendation through the API, the front-end fetches 
mentors and their behaviors for the visitor (often from the cache), constructs a prediction 
vector for the subset of items recommended, sorts the results by value and confidence, and 
returns the recommendation. The API allows multiple recommendations to be returned in a 
single call, including information about the items, predicted values, and confidence. 

Performance Features 

Three features contribute to LikeMinds performance: An application-specific cache, 
pervasive multithreading and a ground-up design supporting distributed processing. 

Caching reduces latency by keeping frequently used items in main memory. Effective cache 
designs strike a balance between performance and flexibility. Requiring everything to fit in 
main memory can reduce latency, but such systems will break when memory is exhausted, or 
when the number of items exceeds an upper bound.  

LikeMinds puts complete flexibility first, and then offers the most efficient caching scheme 
within that requirement. For example, LikeMinds can run in a small amount of memory 
regardless of the number of items or visitors in the database. However, it runs faster when 
more memory is allocated for caching.  

The benefits of the LikeMinds cache can extend to the Web application itself. The cache 
normally records visitors, items, mentors and predictions. LikeMinds can also be configured 
so that item-specific data—such as name, SKU, price, etc.—are cached with the item. The 
LikeMinds APIs let Web applications request this data.  If a visitor receives a 
recommendation from LikeMinds, the data associated with that recommendation are in the 
cache. Thus, the cache not only makes LikeMinds recommendations faster, it also accelerates 
the display of those recommended items. No other personalization solution offers this 
capability. 

Multithreading increases throughput, allowing LikeMinds to exploit a single CPU to the 
greatest extent possible. While one operation blocks waiting for a database fetch, another 
operation can compute a prediction, accept a new request, etc. Multithreading allows 
LikeMinds to exploit symmetric multiprocessors, such as Sun Microsystems Ultra IIs and 
Enterprise Servers or multiprocessor Pentium servers, increasing the throughput with each 
additional processor. 

LikeMinds also supports distributed processing (separate machines connected over a high-speed 
network). Distributed processing support lets you increase throughput incrementally by 
adding inexpensive hardware, gaining a nearly linear increase in throughput for each 
additional machine.  

LikeMinds software was designed from the ground-up to support both tightly coupled 
multiprocessing (symmetric multiprocessors) and loosely coupled multiprocessing 
(distributed processors) efficiently. No other personalization solution offers this flexibility 
and scalability. 



LikeMinds Performance Tests 

Test System 

Andromedia conducted these performance tests using the database from a production 
personalization site—Movie Critic (www.moviecritic.com), the popular movie 
recommendation site that also serves as a demonstration of LikeMinds personalization 
capabilities.  Industry analyst Peppers & Rogers Group recently rated Movie Critic as one of 
the world’s best one-to-one Web sites.  

When the tests were conducted, the Movie Critic database contained 166,518 registered 
visitors and a total of 4,568 different movie listings.  Visitors averaged 46 movie ratings. 
Mentors in the mentor pool (the set of visitor profiles that may be used as mentors) had an 
average of 330 ratings. The system was configured for a maximum of 4,000 mentors in the 
mentor pool. 

LikeMinds performance is independent of the number of registered users and the total 
number of items. Performance is roughly linearly dependent on the number of mentors in 
the mentor pool, the average number of recorded behaviors or ratings per mentor, and the 
function calls per second. 

Andromedia performed simulated visitor interactions using two external “hitter machines” 
to simulate traffic—visitors interacting with the site and generating events as well as 
requesting recommendations. Each hitter machine was an UltraSparc II containing dual 
400MHz CPUs. The hitters made random API calls to add visitor transactions (to enhance 
the visitors’ profiles) and query recommendations (to create a personalized experience). It 
was necessary to use two machines, because one machine could not saturate the LikeMinds 
Personalization Server. 

The test scenario simulated the arrival, site interaction, and departure of Web visitors with 
realistic, random behavior. Each “visitor” issued an API call every four seconds, on average, 
following a Poisson distribution.  Calls were either addTransactions or queryPredictions, chosen 
at random in a 2:3 ratio. Each addTransactions call inserted four transactions on items selected 
according to the global distribution of ratings in the initial database. Each queryPredictions call 
requested the top 100 predictions (e.g. “Best Bets”).  These parameters were chosen to be 
significantly more challenging than those of high-traffic Web sites. Most sites insert a single 
transaction per call and request only the top ten predictions. 

The hitters affected traffic by varying the number of active visitors. The simulation started 
by drawing a random subset of visitors from the initial database. To simulate arrivals and 
departures, 5% of the visitors left the system every ten seconds, yielding an average session 
time of 105 seconds. The simulation replaced visitors one-for-one, 98% of the time with a 
registered visitor already in the database and 2% of the time with a new visitor, registering 
for the first time. This reflects the growth of registered visitors observed on the Movie Critic 
site. 

LikeMinds 3.1 supports temporary visitors, but the tests presented here do not include them. 
Temporary visitors are represented solely in the cache so as to avoid database transactions 
that slow the system down.  However, temporary visitor data disappears when the session 
ends. Use of temporary visitors will allow higher traffic at lower latency than indicated by 
this performance test.  Again, the results shown here are conservative. 



Single-Host NT Configuration 

The most common LikeMinds configuration in practice is the LikeMinds front-end process 
and sifter process sharing a dual-processor Windows/NT machine, with SQL Server 7.0 
running on a separate machine. The sifter process runs at extremely low priority, and gets no 
CPU time when the front-end process is saturated. 

Though this is a reasonable configuration for a customer, it is not a reasonable configuration 
for a performance test. Under heavy load, the front-end would starve the sifter of CPU time, 
and the sifter would not compete with the front-end for the database in a realistic way. At a 
constantly heavy load, sifting would not be performed and accuracy would suffer, but the 
front-end would be faster. 

Instead, Andromedia created a configuration that places the sifter on a separate machine. In 
this test, the main contribution of this additional host was to slow the system down! The 
approach of placing the sifter on a separate machine was used in each of the four tests 
described in this paper. 

 

Component OS System Type CPUs Memory 
Front-end Windows NT Pentium III 500 2 1 GB 

Sifter Windows NT Pentium III 500 2 1 GB 
SQL Server 7.0 Windows NT Pentium III 500 2 1 GB 

Table 1. Single-Host NT Configuration 

The test configuration is shown in Table 1. Other than the presence of dual processors and 
large amounts of memory, these machines hosting LikeMinds Personalization Server are run-
of-the-mill workstations, running Windows/NT 4.0 SP5. None had RAID controllers. The 
SQL Server machine had SCSI drives, with software striping. 
 

Throughput 
(calls/sec) 

Front-end Latency
(milliseconds) 

API Latency 
(milliseconds) Users 

QP AT Total QP AT Average QP AT Average
CPU 

400 60 40 100 36.2 8.7 25.2 47.8 11.9 33.5 30% 
600 90 60 150 47.9 8.0 32.0 66.5 9.9 43.8 45% 
800 118 79 197 112.0 4.0 68.8 113.9 6.6 71.0 78% 

1000 133 88 221 171.5 2.3 103.8 185.3 4.7 113.0 84% 
1200 133 89 222 212.9 2.4 128.7 221.6 4.7 134.9 87% 

 Table 2. Single-Host NT Performance 

 

Table 2 shows the single-host NT performance test results. 

The left-hand side shows the number of users driving the test.  

The first set of three columns shows the system throughput in calls per second. QP indicates 
queryPredications calls, AT indications addTransactions calls, and total is the sum of both. 
One can see that the system becomes saturated at around 221 calls per second, processing an 
average of one call per 4.5mS. 



The second set of three columns shows the latency of calls measured at the front-end 
process.  These figures do not include the round-trip time from the API library through the 
network to the front-end. This is valuable because it establishes a lower bound on the 
latency, assuming better network hardware between API and front-end. 

The third set of three columns shows the latency of calls measured before the API is called 
and after it returns. This is the effective latency seen by the Web application in our switched 
100BaseT Ethernet environment. 

The last column shows the CPU utilization. 
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Figure 2. Single-Host NT Latency vs. Throughput 

Figure 2 shows API latency plotted against throughput.  

As one might expect, heavier demand (throughput) increased latency in the queryPredictions 
call. However, heavier demand reduced latency in addTransactions, an odd result. This is likely 
due to Windows/NT multithreading. The addTransactions call places the transaction on a 
producer-consumer queue. If the queue contains nothing when a transaction is added (such 
as when demand is low), this may cause a thread-switch to the consumer side of the queue, 
increasing latency. However, when something is on the queue, adding another transaction 
has no effect. Therefore, when demand is higher, addTransactions latency declines. 

Using linear interpolation, we can conclude that a dual Pentium III 500 MHz system is 
capable of handling at least 199 API calls per second, with an average latency of 75mS per 
call.  

This configuration is adequate for sites serving up to 8,609,143 personalized page views 
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can 
provide for 1,721,829 personalized page views daily. 

Dual-Host NT Configuration 

The dual-host NT configuration shows the affect of adding another front-end host to the 
previous configuration.  



Component OS System Type CPUs Memory 

Front-end A Windows 
NT Pentium III 500 2 1 GB 

Front-end B Windows 
NT Pentium III 450 2 1 GB 

Sifter Windows 
NT Pentium III 500 2 1 GB 

SQL Server 7.0 Windows 
NT Pentium III 500 2 1 GB 

Table 3. Dual-Host NT Configuration 

Table 3 shows the hardware configuration in this test. A matched Windows/NT dual 
Pentium III 500MHz system was added to host another front-end process. 
 

Throughput 
(calls/sec) 

Front-end Latency
(milliseconds) 

API Latency 
(milliseconds) Users 

QP AT Total QP AT Average QP AT Average
CPU 

400 60 40 99 14.4 2.9 9.8 21.6 5.5 15.1 18% 
800 119 79 198 14.7 2.0 9.6 24.1 5.4 16.6 25% 
1200 179 119 299 41.4 8.2 28.1 49.8 12.2 34.7 55% 
1600 235 157 392 116.4 3.9 71.4 125.1 6.5 77.7 80% 
2000 259 172 431 172.2 2.4 104.3 201.5 4.2 122.6 85% 
2400 258 172 430 218.8 2.5 132.3 248.1 5.6 151.1 87% 

Table 4. Dual-Host NT Performance 

Table 4 shows the dual-host NT performance test results, in the same format as the previous 
test. 
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Figure 3. Dual-Host NT Latency vs. Throughput 

 
Figure 3 plots the API latency against throughput. 

Using linear interpolation with the results in Table 1, we see that at the same average API 
latency of 75mS in the single-host case, the dual-host configuration can process about 386 
calls per second, versus 199 in the single host case. This is approximately 90% of linear 
scaling. 



This configuration is adequate for sites serving up to 16,682,132 personalized page views 
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can 
provide for 3,336,426 personalized page views daily. 

This performance test shows that throughput capacity on Windows/NT scales nearly 
linearly with additional front-end processors.  

Single-Host Sparc 

Another common LikeMinds configuration in practice is the LikeMinds front-end process 
and sifter process sharing a dual-processor UltraSparc machine, with Oracle 8 running on a 
separate machine. Again, the sifter process runs at extremely low priority, and gets no CPU 
time when the front-end process is saturated. 

So, as with the Windows/NT configuration, this test configuration included a sifter on a 
separate machine to slow the system down. 
 

Component OS System Type # of CPUs Memory 
Front-end Solaris 2.6 400 MHz UltraSparc-II 2 2 GB 

Sifter Solaris 2.6 400 MHz UltraSparc-II 1 0.5 GB 
Oracle 8.0.2 Solaris 2.6 300 MHz UltraSparc-II 4 4 GB 

Table 5. Single-Host Sparc Configuration 

 
The test configuration is shown in Table 1. Other than large amounts of memory on the 
front-end, these machines are typical Sun workstations, running Solaris. None had RAID 
controllers. 

The machine hosting the Oracle database is less powerful than database machines found at 
typical customer sites. The recommended Oracle configuration includes 9 to 18 striped disk 
drives with more memory. The system had two SCSI disks with no striping. 

The sifter was hosted on a relatively small machine. It was clear that the sifter could easily 
keep up with traffic even when the front-end processes were saturated.  
 

Throughput 
(calls/sec) 

Front-end Latency
(milliseconds) 

API Latency 
(milliseconds) Users 

QP AT Total QP AT Average QP AT Average
CPU 

400 60 40 100 10.0 0.6 6.2 21.1 5.6 14.9 14 
800 120 80 200 18.4 0.6 11.3 30.2 8.0 21.3 31 
1200 180 120 300 33.4 0.6 20.3 45.7 10.4 31.6 43 
1600 220 140 360 39.6 0.7 24.5 103.9 21.7 71.9 78 
1800 240 160 400 39.6 0.7 24.0 104.5 30.5 74.9 80 
2000 246 159 405 40.6 0.7 24.9 107.5 41.8 81.7 89 

Table 6. Single-Host Sparc Performance 
 
Table 6 shows the performance results for the single-host Sparc configuration. This shows 
that Sparcs can deliver about twice the throughput as Windows/NT—at the same latency 
and the same processor speed.  
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Figure 4. Single-Host Sparc Latency vs. Throughput 

 
Figure 4 plots API latency against throughput. 

This configuration is adequate for sites serving up to 17,283,176 personalized page views 
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can 
provide for 3,456,635 personalized page views daily. 

Dual-Host Sparc 

The two-host Sparc configuration shows the effect of adding another front-end host to the 
previous configuration.  

 

Component OS System Type # of CPUs Memory 
Front-end A Solaris 2.6 400 MHz UltraSparc-II 2 2 GB 
Front-end B Solaris 2.6 400 MHz UltraSparc-II 2 2 GB 

Sifter Solaris 2.6 400 MHz UltraSparc-II 1 0.5 GB 
Oracle 8.0.2 Solaris 2.6 300 MHz UltraSparc-II 4 4 GB 

Table 7. Dual-Host Sparc Configuration 
 
Table 7 shows the hardware configuration in this test. A matched UltraSparc II 400MHz 
system was added to host another front-end process. 
 

Throughput 
(calls/sec) 

Front-end Latency 
(milliseconds) 

API Latency 
(milliseconds) Users 

QP AT Total QP AT Average QP AT Average 
CPU 

800 119 80 199 23.2 0.3 14.0 28.5 7.5 20.1 11% 
1600 238 159 397 49.0 0.6 29.7 76.0 10.9 49.9 25% 
2400 351 234 585 48.9 0.5 29.6 116.7 21.9 73.8 41% 
3200 453 302 754 38.0 0.7 23.1 112.4 29.5 79.2 59% 
4000 488 325 814 49.2 0.7 29.8 141.2 45.1 102.8 66% 

Table 8. Dual-Host Sparc Performance 



 
Table 8 shows the dual-host Sparc performance test results, in the same format as the 
previous test. 
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Figure 5. Dual-Host Sparc Throughput vs. Latency 

Figure 5 plots API latency against throughput. 

Using linear interpolation, we find this configuration provides a maximum latency of 75mS 
at about 623 API calls per second, versus 386 in the single-host case—about 61% of linear 
scaling. This lower level of scaling on Sparcs vs. Windows/NT is likely due to increased 
saturation of the network. Note the high latency cost attributable to the network, shown in 
the difference between the front-end latency columns and the API latency columns of Table 
8. Nevertheless, 61% of linear scalability is quite respectable. 

Multiple LAN adapters on the database server and a partitioned LAN would likely bring the 
scaling closer to linear. Reducing the number of predictions in queryPredictions would also 
bring scaling closer to linear. 

This configuration is adequate for sites serving up to 26,894,400 personalized page views 
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can 
provide for 5,378,880 personalized page views daily. 

Conclusion 

To increase revenues and retain customers, e-merchants are increasingly turning to adaptive 
personalization technology. However, e-businesses cannot sacrifice speed, because visitors 
have little patience for slow Web sites. 

This paper shows that LikeMinds Personalization Server performs at high speed under very 
heavy traffic, making it suitable for the most demanding web sites. 

 
System Hosts HW Cost Calls/sec Calls/day Max pages/day 
Pentium III 500, NT 1 $15,800 199 17,218,286 8,609,143 
Pentium III 500, NT 2 $23,700 386 33,364,264 16,682,132 
UltraSparc II 400, Solaris 1 $56,000 400 34,566,353 17,283,176 
UltraSparc II 400, Solaris 2 $84,000 623 53,788,800 26,894,400 



Table 9. Configuration cost and throughput 

Table 9 shows the four test configurations examined in this paper, and a summary of the 
performance results. The HW Cost column indicates the cost of hardware to host LikeMinds 
and the database server. The Max pages/day column indicates the maximum number of 
pages per day, assuming two calls per page and a minimum response time of 75mS. 

The least expensive test configuration, costing $15,800, delivered up to 8,609,143 pages per 
day at acceptable delay. This configuration is suitable for sites experiencing moderately high 
traffic. 

The most expensive test configuration, costing $84,000, delivered up to 26,894,400 pages per 
day at acceptable delay. This configuration meets the requirements of today’s highest traffic 
Web sites. 

Your Web site’s revenue and customer loyalty depend on the speed and accuracy of your 
personalization system. LikeMinds Personalization Server’s accurate personalization easily 
scales to meet the most demanding needs. 


