
Personalization and Performance

A White Paper
Dan Greening, Pritham Shetty, Glenn Carroll, Stephen Dorato

Andromedia
November 4, 1999

Executive Summary
E-commerce vendors face two important challenges: driving up purchases and maintaining
customer loyalty. Only 2.7%* of browsers buy from a site and only 15%* of those buyers
return to buy again (Forrester Research, Inc. 1999). To succeed, e-marketers must find ways
to keep visitors on the site. They must make the visitors’ experience convenient, satisfying
and personally relevant. Above all, they must entice Web visitors to come back for more.

Personalization dramatically improves web site revenue and customer loyalty. In particular,
personalization has been shown to increase page views per visit, repeat visit rate, and
revenue per visit for e-commerce sites.

Adaptive personalization is a popular way to increase revenue and customer loyalty.
However, many adaptive personalization systems slow down when faced with high traffic.
This paper shows that LikeMinds Personalization Server scales to meet the needs of the
most demanding sites, on relatively inexpensive hardware. LikeMinds distributed processing
architecture scales nearly linearly with additional machines, making it the most efficient and
flexible choice for e-marketers.

Personalization Defined

Personalization comes in many forms. Customization allows visitors to change pages on a web
site to fit their needs, such as specifying what stocks are interesting and what sports scores to
report. This works as long as visitors know what they want.

Rules-based personalization allows a marketer to specify fixed rules to change a site based on
visitor behavior. For instance, a marketer might implement a rule that if a visitor buys a
digital camera, the site should up-sell additional memory for the camera. BroadVision, a
popular e-commerce application server, supports rules-based personalization.

Rules are effective when the marketer understands customers and products well enough to
predict each visitor’s response. However, rules-based personalization falters when a marketer
can’t easily predict the response to an offer. Rules-based systems don’t learn or adapt to user
behavior in realtime. If no rule anticipates an important observed behavior, then a rules-
based system provides the default. Because products, customers and business models
change, rules-based systems require constant maintenance.

When a site has many content items or products to offer, adaptive personalization is more
effective than rules-based personalization. This is because adaptive systems—such as the
collaborative filtering system used by Andromedia’s LikeMinds Personalization Server—can
learn from observed behavior and, based on that behavior, select the right content to present
or the appropriate product to recommend.

Revisiting the previous example, a marketer may not know ahead of time that buyers of
digital cameras are also likely purchasers of high-quality color printers, better video cards, or
more disk storage. The site would not recommend these items because no rule told the
system to do so.

On the other hand, a site with an adaptive personalization system such as LikeMinds could
observe that buyers of digital cameras also purchase these additional items. It would then
automatically start recommending these items to digital camera buyers when appropriate—
without requiring any marketer intervention. Sites with adaptive personalization capture
additional wallet share from online customers. Satisfied by the shopping experience,
customers come back for more. For these reasons, adaptive personalization systems have
become popular features of e-commerce Web sites.

The Need for Speed

As a Web site becomes more popular, the performance of the personalization system
becomes increasingly critical to the site’s ability to satisfy visitors. Online shopping succeeds
when it makes shopping easier and more satisfying than driving to a brick-and-mortar store.
Online visitors put a premium on finding and getting what they want as conveniently and
rapidly as possible. If personalized recommendations are slow or inaccurate then the
convenience is lost and visitors are very likely to take their business elsewhere—the
competition is only one click away.

For these reasons, Andromedia made performance and accuracy paramount in designing
LikeMinds Personalization Server. These design imperatives have won many customers for
Andromedia. Companies that anticipate high demand and perform competitive tests
consistently choose Andromedia’s LikeMinds personalization system for its ability to deliver
accurate recommendations rapidly on high-traffic sites.

How Much Speed Does a Site Need?

Performance tests show LikeMinds meets the requirements of the highest traffic e-
commerce sites.

To help customers choose the right hardware configurations, Andromedia created a
performance laboratory to “torture test” LikeMinds on four different configurations:
LikeMinds hosted on one dual-processor NT machine, on two dual-processor NT machines,
on one dual-processor UltraSparc II machine, and on two dual-processor UltraSparc II
machines. All four configurations interacted with an external database machine.

On the most expensive test configuration Andromedia tried—LikeMinds Personalization
Server running on a distributed-processing environment composed of two dual-processor
UltraSparc IIs with a separate database machine—LikeMinds delivered up to 26,894,400
personalized page views daily, while remaining within an acceptable latency range. This is
comparable to traffic seen on large non-personalized portals, such as www.weather.com,
impressive performance on hardware costing less than $84,000.

In the least expensive test configuration—LikeMinds running on one dual-processor NT
machine—the system delivered up to 8,609,143 personalized pages per day. This
performance easily meets the requirements of most e-commerce sites. The test shows online

businesses can rapidly deliver highly accurate personalized recommendation with hardware
that costs less than $15,800.

The testing scenarios detailed in this report are very conservative. For example, the
measured latency includes network delays between LikeMinds and the web server. Each
simulated page generated four recorded events, and requested 100 recommended items.
Typical sites experience lower network delays and interact with fewer parameters, obtaining
better throughput and latency than reported here.

The test results also demonstrate that LikeMinds multi-threaded, distributed-processing
architecture scales nearly linearly with increases in computing power, meaning that the
system has extremely high capacity and scalability.

Introduction

Personalization Improves Retention, Drives Loyalty, and Increases Revenue

A salesperson that presents each and every customer with personally relevant products is
likely to sell more products, and gain more repeat business. That’s why many successful
Web sites and call centers now incorporate adaptive personalization technology. Adaptive
personalization builds a behavior or interest profile for each Web visitor, and then
dynamically changes the online experience for each visitor based on that profile.
Personalization increases important e-marketing metrics, such as time on the site, number of
pages viewed, rate of return visits, and average spend rate per visit.

Online merchants frequently use personalization systems based on collaborative filtering,
such as Andromedia’s LikeMinds Personalization Server. LikeMinds records a person’s
behavior, identifies other people that have similar behaviors (called “mentors”), and uses
these mentors to predict content or product suggestions that are of interest to that individual
Web visitor. For e-commerce sites, this personally relevant cross-selling increases the
revenue gained from Web visitors.

LikeMinds has been proven to have a high ROI in the field. Levi-Strauss & Co. ran a
comparison trial that showed that LikeMinds personalization increased the average online
customer spend rate by 33%, the average time on the site by 75%, and repeat visitation by
225% over a control group.

Popular Sites Need High Throughput and Scalability

There is an obvious correlation between the accuracy of personalized recommendations and
the revenue that an e-commerce site will derive from them. Accuracy counts—the better the
recommendations, the higher the revenue and better the repeat visit rate. However, there is
usually a tradeoff between performance and accuracy. Few realtime adaptive personalization
systems can deliver both high performance and high accuracy, while accommodating the
traffic seen on premier e-commerce sites. This should be a major concern, as slow
personalization can try a visitor’s patience, result in lost revenue, and—worst of all—drive
visitors to competitors’ sites.

In initial deployments, low traffic may hide throughput limitations in personalization
systems. Problems may not occur until a site gains more traffic. In some cases, extremely
popular e-commerce sites have dropped their initial personalization system choice because

the software was unable to support high demand. The wrong system can be fast in low
traffic and a dog in high traffic.

Every e-commerce site, even those with low traffic today, should plan for future success by
estimating traffic levels one, two and three years down the road. Since effective
personalization is often pervasive, it can be difficult to switch to another vendor. A slow site
could damage an online merchant’s brand before they have time to replace or remove the
system.

Personalization Metrics

Interaction with a personalization server can be broken into two parts: recording events, and
getting predictions. In LikeMinds, application programming interfaces (APIs) provide
addTransaction function calls to notify the system of events (ratings, purchases, product views,
shopping cart inserts/deletes, etc.). These events tell the personalization system that a visitor
has done something of interest. The APIs also provide queryPrediction function calls to
predict what a visitor will do, or recommend personally relevant products or content. A
typical personalized page requires one addTransaction function call that passes multiple
events, and one queryPrediction function call that returns multiple predictions.

The important performance metrics in personalization are throughput and latency.
Throughput is how many function calls can be performed in a second under sustained load.
Latency is the average time required by a function call.

To compute the performance a site requires, it is necessary to first determine the acceptable
latency and peak personalized traffic. Acceptable latency is the amount of time one can allocate per
page to provide personalization. 300mS or less is generally regarded as imperceptible to
visitors. In recommended configurations, LikeMinds performs one addTransaction call plus
one queryPrediction call in less than 150mS total at peak loads.

Peak personalized traffic is the number of pages per second during peak times. To calculate this,
divide total pages per day by 86,400 (the number of seconds per day), then multiply by the
peak traffic per hour and divide by the average traffic per hour.

For example, suppose a site gets 1,000,000 page views daily, with the ratio of peak-to-
average hourly traffic at five-to-one. Then peak personalized traffic is about 58 pages per
second. If every page is personalized with two function calls per page, the site requires 116
calls per second—a demand easily satisfied by a modest Windows/NT implementation of
LikeMinds.

Scalability is the ability of a system to gracefully accommodate more traffic with additional
computers. To achieve high scalability, the system must be designed from the ground-up to
work in parallel. Many personalization systems in use today aren’t designed for scalability.

The rest of this paper discusses LikeMinds’ highly scalable architecture, and describes the
performance testing results for single and distributed configurations of LikeMinds on both
Windows/NT and Solaris. The tests use conservative assumptions, so e-marketers can
confidently use these results to determine the hardware and software configuration needed
to personalize their Web sites.

LikeMinds Architecture

Andromedia’s LikeMinds Personalization Server was designed from the ground-up for low
latency, high throughput, high scalability and high accuracy. These performance goals are
essential for popular sites. Online businesses that directly compared LikeMinds performance
and accuracy with that of competitive products have selected LikeMinds.

This paper also discusses how LikeMinds Personalization Server achieves its high
performance. The server was tested on different hardware and software configurations in the
Andromedia Performance Lab. Results are shown for Windows/NT and Solaris, on single-
and distributed processing configurations, running Oracle and Microsoft SQL Server
database back-end software.

LikeMinds predictive modeling is based on an innovative and patented form of collaborative
filtering. LikeMinds first tracks user behavior, finds mentors with similar behaviors, and then
uses the behaviors and preferences of those mentors to recommend new items.

MonitorMonitor

Behaviors

Content
Content
Server

Content

Behaviors

Content
Content
Server

Behaviors

Content
Content
Server

Content

Cache
Predictor

Recorder
Cache

Predictor

Recorder

Front-end

Find mentors

Sift pool

Find mentors

Sift pool

Find mentors

Sift pool

Back-end
Sifter

API

Interface

APIAPI

Interface

Behaviors

Content
Content
Server API

Behaviors

Content
Content
Server APIContent
Server API Cache

Predictor

Recorder
Cache

Predictor

Recorder
Cache

Predictor

Recorder Find mentors

Sift pool

Find mentors

Sift poolRDB

RDB

RDBRDB

RDBRDB

RDB

Database

RDB

Database

RDBRDB

Database

Figure 1. Distributed Processing Architecture

Figure 1, above, shows the architecture of the LikeMinds system. Behaviors—such as
clicking on a link, purchasing a product, or specifying a preference for something—are
interactions between the visitor and the content server (which can be a Web server, a call
center application, etc.).

The API library is a software interface installed on the same machine as the content server.
It simply translates method calls to a network protocol. The API has several language
realizations: Java, JavaScript, Visual Basic, C++, C. Multiple API libraries, installed on
different machines, can communicate with a single front-end.

The front-end has two functions: record behaviors and predict behaviors (or recommend
things). It can be hosted on a different machine than the content server.

When a visitor does something relevant, which is reported through the API, the front-end
records that behavior in a lazy write-through cache. This type of cache makes writing into
databases extremely fast. Several behaviors can be recorded in a single call.

A relational database stores data about visitors, items to be recommended, mentors and
relationships. An ODBC interface accommodates any relational database server. LikeMinds
also has an Oracle native interface for higher performance needs.

The sifter process constantly runs in the background to determine who’s like whom. It
matches visitors to other visitors or archetypes in the database using up-to-the minute
behavioral data provided by the front-end process. Each visitor gets a set of mentors. Each
mentor’s contribution to the recommendation is weighted according to the mentor’s
similarity to the target.

When a Web application requests a recommendation through the API, the front-end fetches
mentors and their behaviors for the visitor (often from the cache), constructs a prediction
vector for the subset of items recommended, sorts the results by value and confidence, and
returns the recommendation. The API allows multiple recommendations to be returned in a
single call, including information about the items, predicted values, and confidence.

Performance Features

Three features contribute to LikeMinds performance: An application-specific cache,
pervasive multithreading and a ground-up design supporting distributed processing.

Caching reduces latency by keeping frequently used items in main memory. Effective cache
designs strike a balance between performance and flexibility. Requiring everything to fit in
main memory can reduce latency, but such systems will break when memory is exhausted, or
when the number of items exceeds an upper bound.

LikeMinds puts complete flexibility first, and then offers the most efficient caching scheme
within that requirement. For example, LikeMinds can run in a small amount of memory
regardless of the number of items or visitors in the database. However, it runs faster when
more memory is allocated for caching.

The benefits of the LikeMinds cache can extend to the Web application itself. The cache
normally records visitors, items, mentors and predictions. LikeMinds can also be configured
so that item-specific data—such as name, SKU, price, etc.—are cached with the item. The
LikeMinds APIs let Web applications request this data. If a visitor receives a
recommendation from LikeMinds, the data associated with that recommendation are in the
cache. Thus, the cache not only makes LikeMinds recommendations faster, it also accelerates
the display of those recommended items. No other personalization solution offers this
capability.

Multithreading increases throughput, allowing LikeMinds to exploit a single CPU to the
greatest extent possible. While one operation blocks waiting for a database fetch, another
operation can compute a prediction, accept a new request, etc. Multithreading allows
LikeMinds to exploit symmetric multiprocessors, such as Sun Microsystems Ultra IIs and
Enterprise Servers or multiprocessor Pentium servers, increasing the throughput with each
additional processor.

LikeMinds also supports distributed processing (separate machines connected over a high-speed
network). Distributed processing support lets you increase throughput incrementally by
adding inexpensive hardware, gaining a nearly linear increase in throughput for each
additional machine.

LikeMinds software was designed from the ground-up to support both tightly coupled
multiprocessing (symmetric multiprocessors) and loosely coupled multiprocessing
(distributed processors) efficiently. No other personalization solution offers this flexibility
and scalability.

LikeMinds Performance Tests

Test System

Andromedia conducted these performance tests using the database from a production
personalization site—Movie Critic (www.moviecritic.com), the popular movie
recommendation site that also serves as a demonstration of LikeMinds personalization
capabilities. Industry analyst Peppers & Rogers Group recently rated Movie Critic as one of
the world’s best one-to-one Web sites.

When the tests were conducted, the Movie Critic database contained 166,518 registered
visitors and a total of 4,568 different movie listings. Visitors averaged 46 movie ratings.
Mentors in the mentor pool (the set of visitor profiles that may be used as mentors) had an
average of 330 ratings. The system was configured for a maximum of 4,000 mentors in the
mentor pool.

LikeMinds performance is independent of the number of registered users and the total
number of items. Performance is roughly linearly dependent on the number of mentors in
the mentor pool, the average number of recorded behaviors or ratings per mentor, and the
function calls per second.

Andromedia performed simulated visitor interactions using two external “hitter machines”
to simulate traffic—visitors interacting with the site and generating events as well as
requesting recommendations. Each hitter machine was an UltraSparc II containing dual
400MHz CPUs. The hitters made random API calls to add visitor transactions (to enhance
the visitors’ profiles) and query recommendations (to create a personalized experience). It
was necessary to use two machines, because one machine could not saturate the LikeMinds
Personalization Server.

The test scenario simulated the arrival, site interaction, and departure of Web visitors with
realistic, random behavior. Each “visitor” issued an API call every four seconds, on average,
following a Poisson distribution. Calls were either addTransactions or queryPredictions, chosen
at random in a 2:3 ratio. Each addTransactions call inserted four transactions on items selected
according to the global distribution of ratings in the initial database. Each queryPredictions call
requested the top 100 predictions (e.g. “Best Bets”). These parameters were chosen to be
significantly more challenging than those of high-traffic Web sites. Most sites insert a single
transaction per call and request only the top ten predictions.

The hitters affected traffic by varying the number of active visitors. The simulation started
by drawing a random subset of visitors from the initial database. To simulate arrivals and
departures, 5% of the visitors left the system every ten seconds, yielding an average session
time of 105 seconds. The simulation replaced visitors one-for-one, 98% of the time with a
registered visitor already in the database and 2% of the time with a new visitor, registering
for the first time. This reflects the growth of registered visitors observed on the Movie Critic
site.

LikeMinds 3.1 supports temporary visitors, but the tests presented here do not include them.
Temporary visitors are represented solely in the cache so as to avoid database transactions
that slow the system down. However, temporary visitor data disappears when the session
ends. Use of temporary visitors will allow higher traffic at lower latency than indicated by
this performance test. Again, the results shown here are conservative.

Single-Host NT Configuration

The most common LikeMinds configuration in practice is the LikeMinds front-end process
and sifter process sharing a dual-processor Windows/NT machine, with SQL Server 7.0
running on a separate machine. The sifter process runs at extremely low priority, and gets no
CPU time when the front-end process is saturated.

Though this is a reasonable configuration for a customer, it is not a reasonable configuration
for a performance test. Under heavy load, the front-end would starve the sifter of CPU time,
and the sifter would not compete with the front-end for the database in a realistic way. At a
constantly heavy load, sifting would not be performed and accuracy would suffer, but the
front-end would be faster.

Instead, Andromedia created a configuration that places the sifter on a separate machine. In
this test, the main contribution of this additional host was to slow the system down! The
approach of placing the sifter on a separate machine was used in each of the four tests
described in this paper.

Component OS System Type CPUs Memory
Front-end Windows NT Pentium III 500 2 1 GB

Sifter Windows NT Pentium III 500 2 1 GB
SQL Server 7.0 Windows NT Pentium III 500 2 1 GB

Table 1. Single-Host NT Configuration

The test configuration is shown in Table 1. Other than the presence of dual processors and
large amounts of memory, these machines hosting LikeMinds Personalization Server are run-
of-the-mill workstations, running Windows/NT 4.0 SP5. None had RAID controllers. The
SQL Server machine had SCSI drives, with software striping.

Throughput
(calls/sec)

Front-end Latency
(milliseconds)

API Latency
(milliseconds) Users

QP AT Total QP AT Average QP AT Average
CPU

400 60 40 100 36.2 8.7 25.2 47.8 11.9 33.5 30%
600 90 60 150 47.9 8.0 32.0 66.5 9.9 43.8 45%
800 118 79 197 112.0 4.0 68.8 113.9 6.6 71.0 78%

1000 133 88 221 171.5 2.3 103.8 185.3 4.7 113.0 84%
1200 133 89 222 212.9 2.4 128.7 221.6 4.7 134.9 87%

 Table 2. Single-Host NT Performance

Table 2 shows the single-host NT performance test results.

The left-hand side shows the number of users driving the test.

The first set of three columns shows the system throughput in calls per second. QP indicates
queryPredications calls, AT indications addTransactions calls, and total is the sum of both.
One can see that the system becomes saturated at around 221 calls per second, processing an
average of one call per 4.5mS.

The second set of three columns shows the latency of calls measured at the front-end
process. These figures do not include the round-trip time from the API library through the
network to the front-end. This is valuable because it establishes a lower bound on the
latency, assuming better network hardware between API and front-end.

The third set of three columns shows the latency of calls measured before the API is called
and after it returns. This is the effective latency seen by the Web application in our switched
100BaseT Ethernet environment.

The last column shows the CPU utilization.

0

50

100

150

200

250

300

0 50 100 150 200 250

Throughput (calls/sec)

La
te

nc
y

(m
S)

queryPredictions
addTransactions
Average

Figure 2. Single-Host NT Latency vs. Throughput

Figure 2 shows API latency plotted against throughput.

As one might expect, heavier demand (throughput) increased latency in the queryPredictions
call. However, heavier demand reduced latency in addTransactions, an odd result. This is likely
due to Windows/NT multithreading. The addTransactions call places the transaction on a
producer-consumer queue. If the queue contains nothing when a transaction is added (such
as when demand is low), this may cause a thread-switch to the consumer side of the queue,
increasing latency. However, when something is on the queue, adding another transaction
has no effect. Therefore, when demand is higher, addTransactions latency declines.

Using linear interpolation, we can conclude that a dual Pentium III 500 MHz system is
capable of handling at least 199 API calls per second, with an average latency of 75mS per
call.

This configuration is adequate for sites serving up to 8,609,143 personalized page views
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can
provide for 1,721,829 personalized page views daily.

Dual-Host NT Configuration

The dual-host NT configuration shows the affect of adding another front-end host to the
previous configuration.

Component OS System Type CPUs Memory

Front-end A Windows
NT Pentium III 500 2 1 GB

Front-end B Windows
NT Pentium III 450 2 1 GB

Sifter Windows
NT Pentium III 500 2 1 GB

SQL Server 7.0 Windows
NT Pentium III 500 2 1 GB

Table 3. Dual-Host NT Configuration

Table 3 shows the hardware configuration in this test. A matched Windows/NT dual
Pentium III 500MHz system was added to host another front-end process.

Throughput
(calls/sec)

Front-end Latency
(milliseconds)

API Latency
(milliseconds) Users

QP AT Total QP AT Average QP AT Average
CPU

400 60 40 99 14.4 2.9 9.8 21.6 5.5 15.1 18%
800 119 79 198 14.7 2.0 9.6 24.1 5.4 16.6 25%
1200 179 119 299 41.4 8.2 28.1 49.8 12.2 34.7 55%
1600 235 157 392 116.4 3.9 71.4 125.1 6.5 77.7 80%
2000 259 172 431 172.2 2.4 104.3 201.5 4.2 122.6 85%
2400 258 172 430 218.8 2.5 132.3 248.1 5.6 151.1 87%

Table 4. Dual-Host NT Performance

Table 4 shows the dual-host NT performance test results, in the same format as the previous
test.

0

50

100

150

200

250

300

0 100 200 300 400 500

Throughput (calls/sec)

La
te

nc
y

(m
S

)

queryPredictions
addTransactions
Average

Figure 3. Dual-Host NT Latency vs. Throughput

Figure 3 plots the API latency against throughput.

Using linear interpolation with the results in Table 1, we see that at the same average API
latency of 75mS in the single-host case, the dual-host configuration can process about 386
calls per second, versus 199 in the single host case. This is approximately 90% of linear
scaling.

This configuration is adequate for sites serving up to 16,682,132 personalized page views
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can
provide for 3,336,426 personalized page views daily.

This performance test shows that throughput capacity on Windows/NT scales nearly
linearly with additional front-end processors.

Single-Host Sparc

Another common LikeMinds configuration in practice is the LikeMinds front-end process
and sifter process sharing a dual-processor UltraSparc machine, with Oracle 8 running on a
separate machine. Again, the sifter process runs at extremely low priority, and gets no CPU
time when the front-end process is saturated.

So, as with the Windows/NT configuration, this test configuration included a sifter on a
separate machine to slow the system down.

Component OS System Type # of CPUs Memory
Front-end Solaris 2.6 400 MHz UltraSparc-II 2 2 GB

Sifter Solaris 2.6 400 MHz UltraSparc-II 1 0.5 GB
Oracle 8.0.2 Solaris 2.6 300 MHz UltraSparc-II 4 4 GB

Table 5. Single-Host Sparc Configuration

The test configuration is shown in Table 1. Other than large amounts of memory on the
front-end, these machines are typical Sun workstations, running Solaris. None had RAID
controllers.

The machine hosting the Oracle database is less powerful than database machines found at
typical customer sites. The recommended Oracle configuration includes 9 to 18 striped disk
drives with more memory. The system had two SCSI disks with no striping.

The sifter was hosted on a relatively small machine. It was clear that the sifter could easily
keep up with traffic even when the front-end processes were saturated.

Throughput
(calls/sec)

Front-end Latency
(milliseconds)

API Latency
(milliseconds) Users

QP AT Total QP AT Average QP AT Average
CPU

400 60 40 100 10.0 0.6 6.2 21.1 5.6 14.9 14
800 120 80 200 18.4 0.6 11.3 30.2 8.0 21.3 31
1200 180 120 300 33.4 0.6 20.3 45.7 10.4 31.6 43
1600 220 140 360 39.6 0.7 24.5 103.9 21.7 71.9 78
1800 240 160 400 39.6 0.7 24.0 104.5 30.5 74.9 80
2000 246 159 405 40.6 0.7 24.9 107.5 41.8 81.7 89

Table 6. Single-Host Sparc Performance

Table 6 shows the performance results for the single-host Sparc configuration. This shows
that Sparcs can deliver about twice the throughput as Windows/NT—at the same latency
and the same processor speed.

0

50

100

150

200

250

300

0 100 200 300 400 500

Throughput (calls/sec)

La
te

nc
y

(m
S)

queryPredictions
addTransactions
Average

Figure 4. Single-Host Sparc Latency vs. Throughput

Figure 4 plots API latency against throughput.

This configuration is adequate for sites serving up to 17,283,176 personalized page views
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can
provide for 3,456,635 personalized page views daily.

Dual-Host Sparc

The two-host Sparc configuration shows the effect of adding another front-end host to the
previous configuration.

Component OS System Type # of CPUs Memory
Front-end A Solaris 2.6 400 MHz UltraSparc-II 2 2 GB
Front-end B Solaris 2.6 400 MHz UltraSparc-II 2 2 GB

Sifter Solaris 2.6 400 MHz UltraSparc-II 1 0.5 GB
Oracle 8.0.2 Solaris 2.6 300 MHz UltraSparc-II 4 4 GB

Table 7. Dual-Host Sparc Configuration

Table 7 shows the hardware configuration in this test. A matched UltraSparc II 400MHz
system was added to host another front-end process.

Throughput
(calls/sec)

Front-end Latency
(milliseconds)

API Latency
(milliseconds) Users

QP AT Total QP AT Average QP AT Average
CPU

800 119 80 199 23.2 0.3 14.0 28.5 7.5 20.1 11%
1600 238 159 397 49.0 0.6 29.7 76.0 10.9 49.9 25%
2400 351 234 585 48.9 0.5 29.6 116.7 21.9 73.8 41%
3200 453 302 754 38.0 0.7 23.1 112.4 29.5 79.2 59%
4000 488 325 814 49.2 0.7 29.8 141.2 45.1 102.8 66%

Table 8. Dual-Host Sparc Performance

Table 8 shows the dual-host Sparc performance test results, in the same format as the
previous test.

0

50

100

150

200

250

300

0 200 400 600 800 1000

Throughput (calls/sec)

La
te

nc
y

(m
S)

queryPredictions
addTransactions
Average

Figure 5. Dual-Host Sparc Throughput vs. Latency

Figure 5 plots API latency against throughput.

Using linear interpolation, we find this configuration provides a maximum latency of 75mS
at about 623 API calls per second, versus 386 in the single-host case—about 61% of linear
scaling. This lower level of scaling on Sparcs vs. Windows/NT is likely due to increased
saturation of the network. Note the high latency cost attributable to the network, shown in
the difference between the front-end latency columns and the API latency columns of Table
8. Nevertheless, 61% of linear scalability is quite respectable.

Multiple LAN adapters on the database server and a partitioned LAN would likely bring the
scaling closer to linear. Reducing the number of predictions in queryPredictions would also
bring scaling closer to linear.

This configuration is adequate for sites serving up to 26,894,400 personalized page views
daily. For sites seeing a peak-to-average demand ratio of five-to-one, the configuration can
provide for 5,378,880 personalized page views daily.

Conclusion

To increase revenues and retain customers, e-merchants are increasingly turning to adaptive
personalization technology. However, e-businesses cannot sacrifice speed, because visitors
have little patience for slow Web sites.

This paper shows that LikeMinds Personalization Server performs at high speed under very
heavy traffic, making it suitable for the most demanding web sites.

System Hosts HW Cost Calls/sec Calls/day Max pages/day
Pentium III 500, NT 1 $15,800 199 17,218,286 8,609,143
Pentium III 500, NT 2 $23,700 386 33,364,264 16,682,132
UltraSparc II 400, Solaris 1 $56,000 400 34,566,353 17,283,176
UltraSparc II 400, Solaris 2 $84,000 623 53,788,800 26,894,400

Table 9. Configuration cost and throughput

Table 9 shows the four test configurations examined in this paper, and a summary of the
performance results. The HW Cost column indicates the cost of hardware to host LikeMinds
and the database server. The Max pages/day column indicates the maximum number of
pages per day, assuming two calls per page and a minimum response time of 75mS.

The least expensive test configuration, costing $15,800, delivered up to 8,609,143 pages per
day at acceptable delay. This configuration is suitable for sites experiencing moderately high
traffic.

The most expensive test configuration, costing $84,000, delivered up to 26,894,400 pages per
day at acceptable delay. This configuration meets the requirements of today’s highest traffic
Web sites.

Your Web site’s revenue and customer loyalty depend on the speed and accuracy of your
personalization system. LikeMinds Personalization Server’s accurate personalization easily
scales to meet the most demanding needs.

